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CALCULATION OF THE COOLING OF A LIQUID MOVING 

IN AN UNDERGROUND CHANNEL 

V. A. Makagonov, V. M. Sal'nikov, and V. M. Lukin UDC 536.242 

An approximate solution is obtained for a problem of the cooling of a liquid mov- 
ing a channel. The problem is solved on the basis of the use of the Laplace trans- 
form and the variational method. 

The first solution to the problem of the cooling of a liquid in an underground passage 
was first given by Van-Heerden [i]. The classical method of the Laplace transform was used 
to obtain the solution. The final expression for the change in the temperature of the liquid 
in the channel was a complex relation which included Bessel functions of the first and second 
kind. Practical realization of this expression presented certain difficulties, even with the 
aid of a computer. 

It should be noted that, in all cases, use of integral transforms over time leads to so- 
lutions in the form of infinite functional series or improper integrals. Here, only the main 
part of these expressions is used for practical calculations. Thus, if a simple method is 
found for directly determining a function equivalent to the main part of the exact solution, 
then it may be justifiably considered an approximate method suitable for practical applica- 
tion. Such a method, based on the joint use of the Laplace transform and the variational 
method, was proposed by Tsoi [2]. 

Let us examine the solution of the Van-Heerden problem by this approximate method and 
show how much simpler the final expression for the temperature of the liquid moving in the 
channel appears and how much more convenient it is for practical purposes. 

The mathematical formulation of the problem in generalized variables has the form 

- a  +---- , (1) I 1 
a~' [ Or2 r Or J 

The boundary conditions 

The initial conditions 

where 

Q_ao = Z ~ r  O q [ (2) 
Ox ~ Or t~e" 

0----~1 at r - ~ R ,  (3 )  

~1----0 at r---- oo, (4 )  

@~- I at r = O .  (5)  

0 ~ O~ z'  at ---- O, (6 )  
i I = 0  / 

�9 .q_-- ; =~-----; Q = O . 5 C v O  . 
tov--  to gr tov--  togr V 

We will apply the Laplace transform in the following form [3] to problem (1)-(6): 
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(r, p) : :  .I" 11 (r, "r exp (--  p f )  dr'. 
0 

Then the  above  e q u a t i o n s  a r e  r e w r i t t e n  as  f o l l o w s  in  the  ~mAge r e g i o n :  

pn = a L dr2 @ --r dr 

Q--~-- ---- %gr r:R' ( 2 ' )  

O:'q at r-----R, ( 3 ' )  

~:0 at r - - o o ,  ( 4 ' )  

@ = - - 1  at x = 0 .  ( 5 . )  
P 

We will find the solution of Eq. (I v) by the variational method [4]. For this, we con- 
vert it to the form 

d( 
a - -d7  r dr ] = rp~T. ( 7 )  

It is known from the theory of variational calculus that Eq. 
adjoint differential equation of the second order, 

(7), a so-called self- 

d._ (p#) _ qy--f = o, (8) 
dx 

is the Euler-Lagrange equation for the functional 

xl 

J =  [ [p (x) g'z -J-- q (x) y2 + 2f (x) y] dx. 
,J 
xo  

(9) 

Having determined the function y(x), realizing the minimum of the functional (9), we 
find the the solution of Eq. (8). For this, we use the Ritz method. 

Let y*(x) be the exact solution, realizing the minimum of the integral_(9), and J(y*) = 
m be the value of the minimum. If we succeed in constructing the function y(x), for which 
the value of the integral J(y) is very close to m, then y(x) will be an approximation of the 
actual solution. If we succeed in finding a sequence of functions Yn, for which J(Yn) § m, 
then this sequence reduces to the solution of the function. 

To actually find a functional y(x) giving the value of the integral J very close to the 
minimum, we will examine a system of functions dependent on several parameters: 

y = ~ ( x ,  a~, a~, . . . ,  a~), (lO) 

such  t h a t  t he  b o u n d a r y  c o n d i t i o n s  o f  the  boundary - -va lue  p rob lem a r e  s a t i s f i e d  a t  a l l  v a l u e s  
of the parameters, 

We will limit the class of permissible functions to the functions of system (i0) and 
find those functions among them that give the lowest value of the integral (9). Having sub- 
stituted Eq. (I0) into (9) and having performed the necessary operations of differentiation 
and integration, we convert J into a function of n Variables aa, a2, a3, ..., a n . When we 
obtain the minimum of this functional, the numbers a i should satisfy the system of equations 

07 
~ah 

--O(k---- 1, 2, 3, . . . ,  ~0. (II) 

Having solved this system, we obtain certain values of the parameters a~, a=, ..., an giving 
the functions J(al, a2, .... a n) an absolute minimum. Having chosen in the system (i0) a 
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Fig. i. Comparison of the calculated 
and experimental data characterizing 
the law of cooling of water moving 
along an underground channel: i) cal- 
culation according to Van-Heerden; 2) 
our calculation; points denote experi- 
mental results. 

function corresponding to these values of the parameters, we obtain the required approximate 
solution: 

y ( ~  = ~ (x, al, a2 . . . .  , a<). ( 1 2 )  

The functional corresponding to Eq. (7) can be written thus: 

To find the functions n, realizing the minimum of the functional 
a system of the form 

(13) 

(13), we will examine 

"~ ~ Oexp (1 u ~ )  -~ ~ h  (p) {exp [k (1-- ~ ) ]  [1 -- exp [k (1 -- .~) ]]}, (14) 

s a t i s f y i n g  the boundary conditions of the problem q = 0 at r = R and q = 0 at r = ~, which 
is a requirement of the variational method. We will seek the distribution function of di- 
mensionless temperature in the first approximation in the form: 

~1 ---- O eXp (1 - - -~ )  + a~ (p) exp (1 -- --~ ) [ 1 -- exp (1 ----~) ]. (15) 

Substituting Eq. (15) into functional (13) and differentiating and integrating with el- 

dJ 
lowance for the condition -- 0 d~ (p) , we obtain an expression for the coefficient 

-- 20 q- 44 pRz 
~(p)__ a ~. (16) 

32 + 25 pR~ 
a 

Then the solution in images of Eq. (7) in the first approximation has the form 

We insert the approximate 
ground (17) 

- -  20 -k 44 -PR~ 
a @exp(l--~) [l'exp(l-- R ) ] .  (17) 

32 4- 25 pR2 6z 

solution in images for the dimensionless temperature of the 
into the heat-balance equation (2') and find an expression for the dimensionless 
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temperature of the moving liquid 

dO ),gr . a ~ = 0, (18) 
- d----x- -~- dR ~ 3 2  a_ 25 pRza 

the solution of which, with allowance for boundary condition (5'), will be 

6 = - -  exp ) , (19)  
p ~, BiQ d @ ep 

w h e r e  B iQ=Q/Xgr ;~=x / t ? , ;  a -= 12; b = 6 9 R z / a ;  d = 8 2 ;  e - 2 5 R 2 / a .  

The function on the right side of this expression has two features: a simple pole at 
the point p = 0, and an essential singular point p = --d/e. To find the original of the func- 
tion (19), we will use the Laplace transform inversion formula [3] and the residue theorem 
[5]. 

To simplify subsequent calculations, we will make a variable substitution so that the 
essential singular point is moved to the origin of the coordinates of the complex plane. For 

I 
this, we designate q----d@ep; p=q_--d, dp _---2Ldq and convert Eq. (19) to the form 

s ,2 

~ _ _ . _ 1  exp(  ~ a + b p ) _  F exp(--Aq -)  , (20)  
p BiQ d 2,_ ep q -- d 

w h e r e  A----- ~ a - - - - b  ; B-~ ; F = e e x p B .  
BiQ e , BiQ e 

We will seek the original of the solution from the formula 

1 i' exp exp - x '  dcl. (21) 
f ('~') - 2 = i  _ .  d e 

In accordance with the residue theorem [5] 

q~0 L 

The first residue at the point q = d is found from the expression for the residue in the case 
of a simple pole: 

Res f (z) = lim [f (z)(z - -  zo)l = - -  exp 
2=Zo 2~2o e 

The second residue at the point q = 0, an essential singular point, is found as follows. 
transform the integrand in (21) 
point q = O; 

(22) 

We 
and expand it into a Taylor series in the neighborhood of the 

F! 
(23) 

�9 i where o =-- = F exp ---- �9 After expansion of the function into a Laurent expansion 

we pick out the terms containing (q-l). Then the coefficient with (q-:) will be the residue 
of the function F(q) at the point q = 0. Writing the functions comprising F(q) in the form 
of series and multiplying them in accordance with the Cauchy rule, after several mathematical 
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transformations we obtain the coefficient with (q-~) in the Laurent expansion of the inte- 
grand (23) at the point q = 0, which is also the residue of the integrand at this point: 

a-~=--F''~o(Aln+l~ (ne~(~d)q- 1)! ' (24) 

where en(ad)  i s  a t r u n c a t e d  e x p o n e n t i a l  s e r i e s ,  

e~ ( ~  = 
k=0 k! 

Then the  f i n a l  s o l u t i o n  fo r  t he  t e ~ e r a t u r e  o f  a l i q u i d  moving in  an underground channel  i s  
w r i t t e n  in  the  form 

@= exp --2"76" ~BiQ exp 2.385 Biq ~ - -exp( - -  1.28Fo'), 2.385 BiQ J (n-q- 1)! ' 

where Fo'= ax'/R 2. 
Equation (25) is an approximate solution of the problem examined here. However, it is 

considerably simpler than the solution obtained by Van-Heerden. 

The graphical comparison of experimental data and the results of calculations with Eq. 
(25) and the equations of Van-Heerden [I] in Fig. i shows that they agree well. 

NOTATION 

%gr, thermal conductivity of the ground; c, specific heat; 0, density; a, diffusivity; 
Q, unit quantity of heat transferred by the liquid through the channel cross section per unit 
of time; r, distance over radius from channel axis; tg r (r, x, T), temperature of the ground 
as a function of the radial and axial position and time; ta(X , T), temperature of the liquid; 
V, linear velocity of the liquid; to, initial temperature. 

i. 

. 

3. 

4. 

5. 
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DISTRIBUTION OF THE DISPERSE FRACTION OF AN INJECTED 

POLYDISPERSE JET IN A GAS FLOW 

I. L. Mostinskii, D. I. Lamden, and O. G. Stonik UDC 532.525.3 

The distribution of a polydisperse droplet jet over a gas flow is theoretically 
investigated. Results are given for specific nozzles. 

Questions of the distribution of a disperse condensed phase over a gas flow are of im- 
portance in a whole series of processes of chemical engineering, the cooling of hot gases, 
combustion, etc. As a rule, this phase is introduced in individual regions using a dispers- 
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